Supplementary Note

Analysis of lllumina methylation arrays
Custom GoldenGate Array

We selected 151 of the cDMRs identified in Irizarry et al., regions consistently differentially methylated
in all 13 colon cancers studied by comprehensive high-throughput array based methylation (CHARM)
analysis. Probes were designed around CpGs that showed consistent differences in CHARM, while
passing lllumina’s quality control metrics®. The resulting probes covered 139 regions, with 1-7 probes
per region. The majority of the probes were in CpG island shores (66%), defined as less than 2 kb away
from the edge of a canonically defined high-CpG density island". The remainder of the probes were
either inside CpG islands (11%) or >2 kb distant (23%).

Sample Preparation

Cryogenically stored freshly frozen samples were obtained from the Cooperative Human Tissue Network
(NCI, Bethesda, MD), the National Wilms Tumor Study tissue bank (Edmonton, Alberta, Canada) and the
Johns Hopkins Hospital, under an IRB-approved waiver of consent. In total 290 samples were assayed,
including cancers from colon (10), lung (24), breast (27), thyroid (36), and kidney (Wilms’) (25), with
matched normal tissues to 111 of these 122 cancers, along with 30 colon premalignant adenomas, 18
normal colon, and 9 normal breast samples. Two small sections were taken from each sample
(~0.5cmx0.5cmx0.2cm); one for DNA purification and one for histopathology. Histopathology samples
were submitted to the immunohistochemistry lab at Johns Hopkins Hospital for processing. Normal and
cancer samples were matched from the same patient and the same tissue whenever available.

A board-certified oncology pathologist validated classification of all samples independently and blindly.
The pathologist also quantified specific cellular subtypes and p53 status for tumor and normal
specimens from colon and kidney. Supplementary Figure 3 summarizes the histological analysis of the
colon and kidney normal and tumor samples demonstrating that normal samples are typically more
heterogeneous in cellular composition than the tumor samples.

DNA purification was done using either the DNeasy Blood and Tissue Kit (Qiagen) or the MasterPure
Complete DNA Purification Kit (Epicenter). DNA concentration and purity was assayed using a
Nanodrop spectrophotometer. Tumor and normal status and tissue type were balanced by plate to
avoid batch effects. Methylated and unmethylated controls (Zymo Research), along with sample cross-
plate controls, were included on plates. Samples were bisulfite treated using the EZ-96 Methylation Gold
kit (Zymo Research), and hybridization was performed by the Center for Inherited Disease Research of
Johns Hopkins University.

Custom lllumina methylation array processing and analysis

We quantile normalized® separately the raw intensity data from the Cy5 and Cy3 channels representing
methylated and unmethylated DNA, and methylation level was calculated as the ratio of the Cy5
intensity over the sum of the intensities from both channels. To control for array quality, arrays for
which the average of the median log intensities from the two channels was small (<7), or for which the
median absolute deviation of the overall methylation signal was small (<1.9) were removed from the
dataset. We ruled out batch effects following the procedures described by Leek et al. * Differences in
methylation variability were measured and tested using an F-test. Differences in mean methylation
levels were measured and tested using a t-test. Significance was taken as 0.01.

Age Regression of Custom lllumina methylation array



Because not all our samples were paired and age is known to affect methylation profiles, we ran an
analysis to verify that our results were not being driven by patient age. For this, we only used the
tissues for which we had sufficient age data available (lung, breast and thyroid). We did not include
Wilms’ tumor in our analysis since it is a childhood disease. We then regressed age out of our
methylation data by fitting a linear model of the form: logit(f3;) = u+ a - age; + ¢ for each CpG, where f3;is
the measured methylation level for sample j, uis an over-all mean methylation estimate, age; is the age
of sample jand ¢is an error term. Using the age-corrected measurement inverse-logit ( logit(f3) - a - age;
), we repeated the analysis shown in Figure 1, plotting a per CpG analysis of methylation values in cancer
versus normal (Supplementary Fig. 4a-c) and a cluster analysis of the normal tissues using the 25 most
variable probes (Supplementary Fig 4d). We obtained almost identical results.

We also wanted to determine if methylation level had a causal role in the increased variation observed
in cancer, i.e. greater variability at 50% methylation due to the binomial nature of methylation. To test
this, we used an overdispersed binomial model’. We then plotted for each CpG the mean versus
standard deviation of methylation values for normal and cancer in colon, lung, breast, thyroid and
kidney (Wilms’ tumor). The dotted line indicates the expected variance from the binomial model at each
mean methylation level. Increased variability is clearly observed in cancer along the range of
methylation values. CpGs are coded to indicate significant differences in mean only (green), variance
only (purple) or both (orange). From this analysis we concluded that methylation level was not the main
factor in the observed increase variation.

Selected sample copy number analysis

We obtained the raw data from existing CHARM experiments’, which included five of the colon cancer
samples hybridized on the custom GoldenGate array. We then hybridized five of the Wilms tumor
samples, along with normal kidney samples as controls, to the CHARM array. The 5 colon cancer samples
had matched normal sample unlike the 5 WIlms tumor samples where we used 5 normal Kidney tissue
as controls. We extracted the intensities from the Cy3 channel, which corresponds to total DNA. These
intensities were corrected for spatial effect, quantile normalized, and corrected for sequence effect®.
Log-ratios were formed comparing the intensities from the cancer to intensities for normal samples and
the median value of each CHARM region’. Each of the CHARM regions was then computed. We then
used the circular binary segmentation (CBS) algorithm?® to find regions of copy number variation. The
resulting log ratios and estimated copy number segments are shown in Supplementary Figure 5, which
shows a high degree of copy number variation in colon compared to Wilms.

lllumina HumanMethylation27k array analysis

We downloaded a publicly available dataset of methylation levels of 22 matched colon normal/tumor
samples assayed using lllumina’s HumanMethylation27K array (Gene Expression Omnibus accession
number GSE17648). Probes were annotated according to their genomic distance from the edge of
canonically defined CpG islands®: 42% inside islands, 31.6% in CpG island shores, and the remaining
26.4% were >2 kb distant. The methylation measurements were used with no further preprocessing.
Differences in methylation variability were measured and tested using an F-test. Differences in mean
methylation levels were measured and tested using a t-test. Significance was taken as 0.01.

Analysis of whole genome and capture bisulfite sequencing

Whole genome bisulfite sequencing

Bisulfite sequencing libraries were prepared using the approach previously described by Bormann Chung
et al.’, with some modifications so the entire protocol is provided in detail here. 5ug of genomic DNA
was sheared using a Covaris E2 sonicator. 40ng of Alul-digested unmethylated A DNA was added to each



sample in order to monitor the efficiency of bisulfite conversion. Sample DNA ends were then repaired
using 1x End Polish Buffer, 400nM each of dATP, dGTP and dTTP (leaving out dCTP), 40 U of End
Polishing Enzyme 1 (Life Tech) and 80 U of End Polishing Enzyme 2 (Life Tech). Adaptor sequences, as
detailed by Bormann Chung et al. °, were then ligated onto the samples, using 1X T4 ligase buffer, 4.5uM
of methyl-protect P1 adaptor, 4.5uM of P2 adaptor and 50 U of T4 ligase. Nick translation was
performed in 1X Exo-Klenow buffer, 0.5mM dNTPs containing methyl dCTP and 20 units of Exo-Klenow-
Fragment (Ambion) for 1 hour at 16 °C. 500ng aliquots of the resulting product was then bisulfite
converted using formamide as an additional denaturant™. 24pL of formamide was added to an equal
volume of DNA and incubated at 95°C for 5 minutes. Subsequently, 100uL of Zymo Gold bisulfite
conversion reagent (Zymo) was added, and the mixture was incubated for 8 hours in 50°C. Samples
were then desulphonated and purified using spin columns following the EZ-DNA Zymo Methylation-Gold
protocol. 5uL of the bisulfite converted library was amplified in 1X PCR buffer, 0.2 mM dNTP, 1mM each
of the standard SOLID fragment library primers, 5 U of Taq (Denville), and 0.25 U of Pfu Turbo Taq
(Stratagene). The DNA was subjected to 8 cycles of PCR and the resulting product was purified using
AMpure SPRI beads (Beckman Genomics). The libraries were then sequenced on the SOLID 3+ platform
yielding 50 base pair reads.

Capture bisulfite sequencing

A BSPP library was custom designed based in part on DMRs previously found in colon cancer’, covering
~60,000 highly curated differentially methylated regions in the human genome (620,708 CpG sites in
19.2Mb of genomic regions covered). 1ug of genomic DNA from the three tumor-normal samples was
bisulfite converted using the Zymo EZ Methylation Gold Kit. The bisulfite converted DNA was then
captured with BSPP using a previously described method". Briefly, 300ng of bisulfite converted DNA
was captured in a 10ul reaction containing 1X Ampligase Buffer (Epicenter Biotechnologies). The
mixture was heated to 95°C for 30 seconds and then incubated for 20 hours at 58°C. A 2l mix
containing 2U/ul AmpliTaq Stoffel fragment, 0.5U/ul Ampligase, 50uM dNTP was added to each tube.
The tubes were incubated at 58°C for another 28 hours and then heat inactivated at 94°C for 2 minutes.
Single stranded DNA was removed by adding 2ul of Exo I/Ill mix and incubating at 37°C for 1 hour.
300ng of the captured padlock probes were amplified as previously described and then digested with
Mme | in order to remove the amplification primers''. Adapters compatible with the lllumina GAII
sequencer were then ligated to the digested DNA in order to generate the sequencing libraries™.

Alignment of sequencing reads from bisulfite treated DNA

We developed a custom alignment tool for lllumina and SOLID sequencing reads derived from bisulfite-
treated DNA. The tool aligned reads with the aid of a spaced-seed index of the genome while biasing
neither toward nor against methylated cytosines in CpGs. Note that aligners can introduce a bias when
an unmethylated C (which becomes a T) is penalized for aligning to a C in the genome, but a methylated
C (which remains a C) is not. The opposite bias can also occur, e.g., if all CpGs are converted to TpGs in
the reference prior to alignment. Other projects address this in part by additionally converting Cs to Ts
in the reads'®. But this approach is not applicable to the colorspace reads generated by the SOLID
instrument, for which nucleotide positions encoding Cs cannot be accurately determined prior to
alignment. The aligner used here leaves each read as-is but penalizes neither C-to-C nor T-to-C partial
alignments in CpGs.

For alignment we extend the approach taken by the BSMAP tool**. Our approach supports a broad

range of spaced-seed designs and extends the BSMAP approach to allow alignment of SOLID colorspace
reads as well as typical lllumina reads. Like in BSMAP, C/T bias is avoided by creating and storing
multiple copies (potentially) of each reference subsequence indexed, one copy for each distinct
assignment of Cs and Ts to genomic Cs or CpGs present in the subsequence. For colorspace reads, our



algorithm extracts subsequences of colors (rather than nucleotides), and a copy is created for every
distinct assignment of Cs and Ts to genomic Cs present in any nucleotide overlapped by any color in the
extracted subsequence.

For these experiments, the alignment algorithm is configured to remove the penalty associated with
either a Cor a T aligning to a Cin a CpG, and to treat non-CpG Cs in the genome as Ts. This policy
removes bias from CpG methylation measurements, but assumes that there is little or no non-CpG
cytosine methylation. Where non-CpG cytosine methylation occurs, this approach is more likely to fail
to find alignments overlapping the methylated cytosine, and the resulting consensus will contain an anti-
methylation bias at the methylated cytosine.

The algorithm was extended to handle data both from protocols that yield sequencing reads only from
the bisulfite-treated Watson and Crick strands (as is the case for the whole-genome bisulfite SOLiD
sequencing data discussed here), as well as from protocols that yield those sequences and their reverse
complements (as is the case for the capture bisulfite lllumina sequencing data).

Alignment of SOLiD sequencing reads from whole-genome bisulfite-treated DNA: The algorithm
described above was used to align a total of 7.79 billion reads obtained from 8 runs of a SOLiD 3 Plus
instrument against a reference sequence collection consisting of the GRCh37 human genome assembly
(including mitochondrial DNA and “unplaced” contigs) plus the sequence of the spiked-in A phage
genome. Alignment was performed with respect to the bisulfite-treated Watson and Crick strands but
not their reverse complements, per the sequencing protocol used. Each read obtained from the SOLID 3
Plus instrument consists of a primer nucleotide followed by a string of 50 “colors,” where each color
encodes a class of dinucleotides according to the SOLID colorspace encoding scheme. Prior to
alignment, the initial primer base and 5’-most color were trimmed from all input reads, yielding a string
of 49 colors. The alignment policy was selected to guarantee that all alignments with up to 3 color
mismatches would be found, and some but not all alignments with 4-6 color mismatches would be
found. The alignment of a Tor Cto a Cin a CpG does not incur a mismatch penalty (except in some
cases where a sequencing error is also present). The policy was also set to distinguish between reads
that align uniquely and those that align non-uniquely. Color-to-color alignments are decoded into
nucleotide alignments with a Viterbi-like algorithm™. The final alignment, when expressed in
nucleotides, is one character shorter than the input read, i.e. 48 nucleotides long. Alignments for reads
aligning non-uniquely are ignored in subsequent stages. Alignment results are summarized in
Supplementary Table 14 and Supplementary Figure 19.

Alignment of lllumina sequencing reads from captured bisulfite-treated DNA: The algorithm described
above was also used to align a total of 79.3 million reads obtained from an Illumina GA Il instrument
against a reference sequence collection consisting of the GRCh37 human genome assembly (including
mitochondrial DNA and “unplaced” contigs). Alignment was performed with respect to the bisulfite-
treated Watson and Crick strands and their reverse complements, per the sequencing protocol used.
Each read consisted of either 73 nucleotides (for 14.5 million reads) or 80 nucleotides (for 64.8 million
reads). No trimming was performed prior to alignment. The alignment policy was selected to guarantee
that all alignments with up to 4 nucleotide mismatches would be found, and some but not all alignments
with 5 or 6 nucleotide mismatches would be found. The alignment of a Tor Cto a Cin a CpG does not
incur a mismatch penalty (except in some cases where a sequencing error is also present). The policy
was also set to distinguish between reads that align uniquely and those that align non-uniquely.
Alignments for reads aligning non-uniquely are ignored in subsequent stages. Alignment results are
summarized in Supplementary Table 15 and Supplementary Figure 21.

Extraction of methylation evidence from alignments: After alignment, a series of scripts extracted and
summarized CpG methylation evidence present in the unique alighments. The evidence was compiled



into a set of per-sample, per-chromosome evidence tables. Alignments to the A phage genome were
also compiled into a separate table. A piece of CpG “evidence” was created when an alighment
overlapped the cytosine position of a CpG in the reference and the overlapping nucleotide in the
alignment was either a T (indicating a lack of methylation) or a C (indicating presence of methylation).
Once a piece of evidence was extracted from a unique alignment, it was subjected to a filter. In the case
of the SOLID reads obtained by sequencing whole-genome bisulfite-treated DNA, the filter removed
evidence that was either refuted by one or both of the overlapping colors from the original read, or was
within 4 positions of either end of the nucleotide alignment. In the case of the lllumina reads obtained
by sequencing captured, bisulfite-treated DNA, evidence within 15 positions of the beginning (5’ end) of
the read was discarded. The positions filtered in this step were determined by examining the M-bias
lines (see below).

All evidence that passed the filtering step was added to the CpG summary table. A record in the table
summarizes, for a given CpG: the filtered evidence nucleotides that aligned to it, the filtered quality
values (i.e. of the two colors overlapping the evidence nucleotide for SOLiD data, or the of the
overlapping nucleotide for lllumina data) that aligned to it, the number of distinct alignment positions
from which filtered evidence was taken, the “mapability” of the CpG and surrounding bases (i.e. the
number of 50-mers overlapping the CpG that are unique up to 3 mismatches), (e) the local CG content of
the bases surrounded the CpG. The mapability measure for each genome position was pre-calculated
using Bowtie'. Supplementary Tables 16 and 17 summarize the amount and type of evidence extracted
at each stage for the whole-genome SOLID bisulfite sequencing and lllumina capture bisulfite
sequencing data respectively. Supplementary Table 18 summarizes the whole-genome SOLIiD bisulfite
sequencing CpG evidence coverage with respect to the GRCh37 human genome assembly for each
sample. Finally, Supplementary Table 1 summarizes per-sample average coverage both genome-wide
and for CpG cytosines for the whole genome bisulfite data and Supplementary Table 2 for the capture
bisulfite sequencing data.

In the case of the SOLID reads obtained by sequencing whole-genome bisulfite-treated DNA, evidence
from reads that aligned uniquely to the A genome was used to estimate the bisulfite conversion rate for
unmethylated cytosines. The conversion rate was estimated as the fraction of high-quality evidence
from reads aligning uniquely to the A phage genome that indicated lack of methylation. Supplementary
Figure 20 and the final column of Supplementary Table 14 show the estimates, which all lie between
99.7% and 99.8%.

To measure global prevalence of non-CpG cytosine methylation, we examined all filtered nucleotide
evidence from the SOLID reads overlapping non-CpG cytosine positions in the human reference genome.
Filtered nucleotide evidence consists of evidence (a) from reads that aligned uniquely, (b) where both
overlapping colors from the original read agree with the decoded nucleotide and, (c) where nucleotides
within 4 positions of either end of the alighment are excluded. For each subject we measure the overall
fraction of evidence at CpG cytosine positions where the overlapping nucleotide isa T or a C. We do the
same for non-CpG cytosine positions. Supplementary Table 19 summarizes the results, comparing them
with the rate of cytosine non-conversion estimated from filtered evidence aligning to the A phage
genome. We observe that for all subjects, the fraction of Cs observed overlapping non-CpG cytosines
does not rise above the approximate fraction expected from unconverted cytosines.

Supplementary Figures 22 and 23 shows the results of a diagnostic assessing a type of bias in the filtered
evidence from the reads that aligned uniquely to the human genome. The diagnostic is to calculate, for
each offset from the 5’ end of the read, the proportion of filtered evidence taken from any read at that
position that indicates that methylation is present. This is the “M-bias line.” One might expect this
proportion to be independent of position, and therefore might expect the M-bias line to be flat and



horizontal. In practice, sequencing error and other noise arising from sample preparation and alighment
cause the M-bias line to bend. In our experience, bends usually occur toward one or both ends of the
read. The positional filtering criteria described above were designed to eliminate evidence from
positions where the M-bias line deviated substantially from the main horizontal line. The relative
flatness of the lines obtained for our samples after filtering gives us some additional assurance that the
signal we obtain is not substantially affected by noise such as sequencing error.

Finally, pieces of evidence with an accompanying quality score of 10 or less (or in the case of SOLID data,
an average score of 10 or less for the two colors overlapping the evidence) were filtered out before
smoothing the methylation data.

Smoothing via local likelihood estimation: Because the data was binomially distributed, we used local
likelihood estimation™®. This approach assumes that the p(L), the methylation level at genomic location
L, is a smooth function of L; in other words, that CpGs that are close have similar methylation levels®.
The local likelihood approach uses data within windows of predefined sizes to estimates p(L) and
weighing data based on distance to L (based on a tricube kernel). In addition, the binomial model
ensures that data points with high coverage receive greater weight. We defined two window sizes to
detect the two different types of DMRs; for the blocks, a large window to detect low frequency
differences, and a smaller window to detect high frequency differences, the small DMRs. For each
sample, the smoothed data was evaluated on the same grid of data points termed “covered CpGs”,
consisting of those CpGs where at least two normals samples had coverage of at least 2.

For the small DMRs, the high-frequency analysis used a window size of 70 CpG or 1,000 bps; whichever
generated a larger region. For the blocks, the low-frequency analysis used a window size of 500 CpGs or
2,000 basepairs; again whichever was larger. Note that the use of a tricube kernel ensures that data
points far from the center of the window receive a smaller weight. This approach provided highly
precise estimates of CpG methylation levels p(L) for each sample. The standard errors ranged from 0-
0.11 (mean of 0.04) for the high frequency smoothing and 0.01-0.04 (mean 0.02) for low frequency. We
obtained pair-wise correlations between methylation estimates for the three normal samples of 0.97,
0.96, and 0.96, and the three cancer samples of 0.87, 0.90, and 0.91, confirming coverage adequacy. An
example of the results from the high-frequency smoothing is provided as Supplementary Figure 24.
High-coverage data from selected regions confirm the highly accurate and precise estimates predicted
by the statistical calculations as described in detail in the Comparison of bisulfite capture and whole
genome bisulfite sequencing Section below

Accounting for biological variability: We then developed a method for finding differences based on t-
statistics that take into account biological variability. We started with the highly precise estimates of
pi(L) for each sample i at each CpG location L. We obtained the average difference between the three
tumor samples and the three normal samples referred to as d(L). To properly account for biological
variability (Supplementary Fig. 13) we estimated the standard error of d(L) using the normal samples.
We used only the normal samples because as we demonstrated, with independent data, cancer samples
are prone to high variability (Fig. 1) and here we are concerned only with DMRs In other words, we are
not assuming that the cancer samples are biological replicates. The standard error se[d(L)] was
therefore estimated as o(L)*V(2/3) with o(L) the standard deviation of the p;(L) for the three normal
samples. To improve standard error estimates, we smoothed these using a running mean with a window
size of 101 observations. To avoid inflated t-statistics as a result of artificially low variance, we set a
threshold for the standard deviation of its 75th percentile, before computing the smoothed result. With
the standard deviation in place we constructed the t-statistic t(L) = d(L)/se[d(L)].

Correcting for low frequency effects: For the high frequency analysis the t-statistic was further
corrected for low frequency changes. This allowed us to find local features, such as a hypermethylated



small DMR, inside global features, i.e. hypo- or hypermethylated block. We calculated this correction
factor by forming a fixed grid of positions 2,000 bp apart in the genome, linearly interpolating the
neighboring t-statistics to obtain measurements at these positions and then smoothing this dataset with
a robust smoother based on the Huber family'® and a bandwidth of 25,000 bp. It was important to use a
fixed 2,000 bp grid instead of using the covered CpGs, otherwise we would correct out the local features
we set out to identify. We then defined small DMRs as contiguous CpGs within 300 bp of each other,
with the t-statistics above 4.6 or below -4.6 (corresponding to the 95th quantile of the empirical
distribution of the t-statistics) and all differences in the same direction. For the low frequency analysis
the t-statistics cutoff was 2 and contiguous CpG were defined as within 10,000 bps from each other.

Filtering and merging: These sets of regions formed our small DMRs and blocks that were subsequently
filtered and processed according to the following criteria:

1) A small DMR needed to contain at least 3 covered CpGs and have at least 1 covered CpG per 300 bp.
Furthermore, the mean difference in methylation percentages between tumors and normals across the
small DMR had to be greater than 0.1.

2) A block needed to be longer than 5kb. Blocks containing CpG Islands with a mean methylation of less
than 0.25 in the normal samples were separated into two. Putative blocks that were shorter than 5kb
were included as small DMRs provided they satisfied the small DMR filters above.

After filtering, pairs of small DMRs were merged if they were less than 1kb apart, changed in the same
direction (both hypermethylated or both hypomethylated), and had no covered CpGs in the area
separating them. The final list of blocks is available as Supplementary Data 2, and of small DMRs as
Supplementary Data 4.

The data from the adenoma samples were smoothed in the same way.
DMR Classification

Small DMRs were classified into categories based methylation profiles of the tumor and normal samples
within the DMR and the two flanking regions (within 800bp). Based on these results, the DMRs that
were discovered from data exploration could be classified into three types termed loss of methylation
boundaries, shifting of methylation boundaries, and novel hypomethylation (Fig. 3). A mathematical
algorithm was used to automatically classify DMRs. Briefly; mean methylation was computed for both
tumor and normal samples within the DMR and in the flanking the DMR both upstream and
downstream. This provided three numbers for each of the six samples. If all the normal samples showed
high methylation values (>50%) in the flanking regions and low methylation values (<0.25%) and the
tumor samples all showed intermediate values across DMR and flanking regions, the DMR was classified
as loss of methylation boundary. If one of the flanking regions had low methylation values in both the
normal and the tumor samples, the region was classified as a shift of methylation boundary. Finally, if all
the normal samples showed high methylation values in the DMR and flanking regions while the tumor
samples were lower in the DMR, the region was classified as novel hypomethylation. The details of the
algorithm are best understood by viewing the computer code (made available upon request).

Comparison of bisulfite capture and whole genome bisulfite sequencing

The capture bisulfite experiment described above provided data for 474,829 CpGs (in one or more
samples) from 39,262 regions. The genomic size of these regions ranged from 230 to 2,200 bp. For the
analysis presented here we considered only the CpGs with coverage above 30x which resulted in 39,285,
107,332 and 86,855 CpGs in the normal samples and 125,611, 94,320, and 104,680 in the cancer. We
computed an estimate of methylation for each CpG using simply the proportion of reads showing
evidence of methylation for that CpG. We did not perform any averaging across genomic regions or



sample. We then compared the whole genome bisulfite sequencing data processed with BSmooth
(referred to here as WGBS) to the high-coverage capture bisulfite (referred to as CAP).

The correlation between the WGBS and CAP data was 0.89, 0.89, and 0.87 for the normal samples and
0.83 for all three cancer samples. These results are quite remarkable given that the data were created at
different times, by different experimental protocols, in different laboratories, and using different
technology platforms. To determine how well the WGBS data corresponds to the CAP data spatially
along the genome we visually inspected all genomic regions for which we had at least 50 CpGs with a
coverage of at least 30x within a 5kb window. This yielded 49 such regions. Supplementary Figure 8
compares the result of BSmooth from WGBS with the single-base resolution methylation estimates from
CAP for three such regions. The agreement between the smooth curves produced by BSmooth and the
high-coverage CAP data is again remarkable.

Analysis of possible strand bias

Strand bias may be a problem in bisulfite sequencing data. Here we demonstrate that strand bias is not
a concern with our data. We first noted that the sample specific proportion of reads originating from the
Watson strand ranged from 0.503-0.504. We then examined each of the small DMRs and the blocks for
possible strand bias by computing the percentage of the total evidence coming from the Watson strand
for each of the reported regions. Specifically, we computed the sum of the Watson coverage of each
CpG in the region divided by the sum of the coverage of each CpG and then averaged these numbers
across the three normal samples and the three tumor samples separately. In total, 97.5% (tumors) and
97.4% (normals) of the small DMRs and 99.6% (tumors) and 99.8% (normal) of the blocks has a
percentage of evidence coming from the Watson strand between 20% and 80%. Regions with extreme
values of the percent evidence coming from the Watson strand were all very small and contained very
few CpGs. For the convenience of users of our reported regions, columns with these statistics for each
small DMR and block are included in Supplementary Tables 3, 7, 20, and 21.

Additional analyses
Pyrosequencing

To verify the accuracy of our methylation values obtained from BSmooth, we performed bisulfite
pyrosequencing on the same 6 samples that were sequenced, for the small DMR regions shown in Figure
3. A 300 ng aliquot of genomic DNA from the sequenced samples were bisulfite converted and amplified
using nested PCR (primers listed in Supplementary Data 13). The annealing temperature used for all
PCR reactions was 50C. The resulting PCR products were used directly in pyrosequencing reactions,
using an HS96A pyrosequencer (Qiagen). Plotting these loci shows good correspondence with our
smoothed methylation values (Supplementary Fig. 9).

Defining Tissue-Specific Genes

We downloaded 529 gene expression microarrays from NCBI GEO representing 30 different tissues for
which at least 5 biological replicates were available. The GEO accession numbers for these 529
microarrays are listed in Supplementary Table 23. We defined a tissue specific gene as a gene that was
consistently expressed in 95% or more of the biological replicates for 5 or fewer tissues.

Sample-specific blocks and DMRs and their overlap

Sample specific blocks and DMRs were computed as per the outline above, by comparing a single tumor
sample to all three normal samples. Each of the three sets of sample-specific blocks was found to be



highly concordant with the blocks obtained from the joint analysis of all the cancer and normal samples.
Specifically, 95.1%, 98.3%, 96.9% of the bases covered by the three tumor-specific blocks overlap with
the blocks from the joint analysis. Conversely 94.4%, 88.7%, 82.0% of the bases covered by the blocks
from the joint analysis overlaps the three tumors specific blocks. All of these overlaps are highly
significant (fisher's exact test, p < 2.2e-16). This demonstrated that the tumor-specific blocks are largely
contained inside the blocks from the joint analysis. The list of sample-specific blocks and small DMRs can
be found in Supplementary Table 20 and 21.

Co-occurrence of sample-specific blocks

To further investigate the extent to which sample-specific blocks co-occur, we analyzed the start and
end positions of the blocks as follows. For each chromosome, we used the observed distribution of the
sample-specific blocks to estimate the distance between block starts. For each chromosome, 1,000
simulated start positions of blocks were generated according to this distribution. We excluded
chromosome Y due to the small number of sample-specific blocks. Each set of simulated start positions
were constrained to the set of genomic CpG positions to take into account the fact that CpGs are not
randomly distributed throughout the genome. We then picked one of the individuals to serve as a
reference, and for each observed start position on the reference individual we computed the distance to
the closest start site in each of the two other individuals. We also computed the distance between the
reference individual and each of the 1,000 simulated sets of start positions. For illustration purposes,
Supplementary Figure 10a shows the observed and simulated block start for a 20 Mb region of
chromosome 1. In this analysis each of the three individuals was in turn used as a reference, yielding 6
sets of observed distances and 3,000 sets of expected (simulated) distances. The median distance for
each of the 6 observed set of distances were smaller than the median of every single set of expected
distances (P<0.001). We repeated this analysis for the end sites as well, obtaining the same results.
Supplementary Figure 10b shows boxplots of the observed and expected distance distributions, where
the observed distribution is the pool of all 6 observed distributions (the individual distributions are very
similar) and the expected distribution is the pool of all 3,000 expected distributions (the individual
distributions were again very similar).

Hypomethylation in blocks and repeat regions

Repeat regions were identified based on the UCSC repeatMasker track®. Based on the repeats and/or
blocks, the genome was segmented into regions both repeats and blocks, repeats but not blocks, not
repeats but blocks, and neither repeats nor blocks. The methylation levels were computed as the
average of the high-frequency smoothed methylation levels of all CpGs in the 4 different regions.
Density estimates were computed from the same distribution. Supplementary Table 3 describes the
extent to which we were able to map CpGs inside repeat elements.

Enrichment of overlap between different genomic domains

For each pair of different genomic domains (like blocks and LOCKs) we form a 2x2 table containing the
number of CpGs inside and outside the two genomic domains (like inside blocks and inside LOCKs, inside
blocks and outside LOCKs, etc). Odds ratios and p-values were calculated using Fisher’s exact test.

Copy number analysis

Estimates of copy number were based on the per-base coverage obtained after alignment. We did not
apply the filters developed specifically for methylation measurements (described in the Bisulfite
alignment Section). Note that the coverage we are considering here is not specific to CpGs: every
genomic position is assigned a coverage value. We then computed, for each sample, the average
coverage in non-overlapping 10,000bp windows, yielding two coverage vectors for each tumor-normal
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pair denoted cov(T) and cov(N). For each tumor-normal pair we defined the corrected log-ratio:
log2(CN) = log2(cov(T)) — log2(cov(N)) + c. Here c is a correction factor to account for different yields in
each sequencing run; c is defined as the log of total sequencing yield of the normal sample divide by
total yield of the tumor sample. The copy number log-ratios were segmented using circular binary
segmentation (CBS)™. For illustrative purposes, copy number log-ratios and the associated
segmentation on chromosome 20 were depicted (Supplementary Fig. 11a).

To determine if copy number had an effect on methylation estimates, each segment provided by CBS
was divided into 100kb regions. For each of these regions we computed average copy number ratios as
well as average methylation ratios. These were then plotted (Supplementary Fig. 11b) and no
relationship between CNV and methylation blocks was observed.

Gene expression analysis

We obtained expression data from the gene expression barcode (rafalab.jhsph.edu/barcode). This
resource combines all the expression data from the public repositories purportedly to standardize data
in a way that allows one to call a gene expressed or not expressed *°. From this source, we used two
independent colon cancer datasets (Fig 5b: GSE8671°" and Supplementary Fig 18: GSE4183%*%). To
define hypervariable genes we performed an F-test using a across sample variance in tumor and normal
samples computed from the original log expression. A gene was defined as expressed if it had a gene
expression barcode standardized value above 2.54 (p=0.01). For the fibroblast analysis we downloaded
datasets (GSE789024, GSE11418%, GSE1191926). These expression values from these datasets were also
standardized using the gene expression barcode. The standardized values were used to determine if
genes were expressed or not each sample.

To determine the correlation between small DMRs and expression, we considered a gene and a small
DMR associated if the DMR was within 2,000 bps from the transcription start site of the gene; 6,869
genes mapped to a DMR in this way.

Note that because the focus of our paper is to report reproducible results about cancer, we have
confirmed the inverse relationship between methylation and gene expression on completely
independent sets (with multiple samples). But we also confirmed these results using one of the same
samples for which we had methylation. Specifically, we obtained gene expression by hybridizing one of
our normal/cancer pairs to an Affymetrix array (GEO accession number GSE13471). The inverse
relationship was again confirmed (p<107-15).

Gene expression variance analysis

Because the great majority of genes exhibit increased variance in cancer samples, standard statistical
inference techniques do not guide the choice of a threshold to dichotomize genes by hypervariability. To
demonstrate the indisputable association between hypomethylated blocks and hypervariabilty of gene
expression we stratified genes by their across-sample standard deviation in cancer into 10 bins and for
each bin we calculated the proportion of these genes that are in hypomethylated blocks. There is a clear
(Supplementary Fig. 17), and statistically significant (p<0.01), direct relationship starting at about 20%
and ending at 100%.

Gene ontology (GO) enrichment analysis

Throughout the text we described results from gene ontology (GO) enrichment analyses. These analyses
were based on gene ontology enrichment analysis®”*®. Specifically, for any given gene list we performed
chi-squared test for association between genes in the list and GO categories. The analysis was carried
out using the Bioconductor GOstats package®’.
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Data Annotation

We obtained annotation from the UCSC genome browser based on hgl9. In the cases where a data
track was only available for hg18 or hg17, the UCSC liftOver tool*was used to map between builds of
the human genome. Specifically we used the repeatMasker track'®, the RefSeq mRNA track’?, and the
UCSC known genes track®>.

Laminin Associated Domain (LAD) coordinates were obtained from the NKI LADs track from UCSC,
generated from microarrays in fibroblast cells**. PMDs were obtained from Lister et al., generated from
bisulfite sequencing in fibroblast cells*>. DNase | hypersensitive sites were obtained from the UCSC
ENCODE track®, using the Hles, Caco2repl, and Caco2rep2, both the narrow and broad peak.
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Total # Cs, Ts Average
Total genome -
aligning to CpG| coverage of
coverage after .
e cytosines after | mapable CpG
filtering N -
filtering cytosines
Normal 1 13,213,005,428 116,394,219 5.578
Cancer 1 13,106,826,609 118,994,714 5.703
Normal 2 13,137,358,383 119,303,310 5.717
Cancer 2 13,411,947,895 119,273,248 5.716
Normal 3 12,592,027,592 113,220,232 5.426
Cancer 3 12,593,520,085 113,929,959 5.460
Adenoma 1 10,965,839,892 102,341,491 4.905
Adenoma 2 11,017,476,026 95,652,482 4.584

Supplementary Table 1: Whole-genome bisulfite SOLID sequencing coverage both genome-wide and for CpG
cytosines. Average coverage of mappable CpG cytosines (column 3) was calculated by dividing the total number of
pieces of C and T nucleotide evidence aligning to CpG cytosines after filtering (column 2) by the total number of CpG
dinucleotides in GRCh37 that are “mappable” in our experiment: 20.9 million. A CpG was considered “mappable” if it was
overlapped by at least one non-ambiguous reference 50 bp substring; non-ambiguous substrings are those for which no

other 50 bp reference substring exists within 3 mismatches.




Total # Cs,
Total Ts aligning Average
nucleotide to CpG coverage of Nu‘r;i?ﬁ l;gfa%st

coverage after| cytosines | covered CpG coverage

filtering after cytosines g

filtering

Normal 1| 200,586,597 | 5,574,845 22.3 39,285
Cancer 1| 1,105,875,090 | 31,003,296 106.4 107,332
Normal 2| 616,177,235 | 14,730,151 46.1 86,855
Cancer 2| 1,137,330,587 | 29,033,239 82.3 125,611
Normal 3| 834,907,436 | 18,480,903 67.4 94,320
Cancer 3| 1.081,926,255 | 24,533,799 81.2 104,680

Supplementary Table 2: Capture bisulfite lllumina GA Il sequencing. In total, 474,829 CpGs were covered by at least
one read in at least one sample.



Repeat Family Genomic size Number of Percent Percent
(bp) CpGs mappable CpGs | covered CpGs
acro 31082 606 12.4 27 1
Alu 307842860 7129208 36.1 18
centr 8244270 81346 53.7 57.8
CR1 10918988 60817 96.8 93.8
Deu 180434 1386 99 97.8
DNA 341642 1968 94.8 91.6
DNA? 273824 1635 99.6 96.3
Dong-R4 121003 635 99.7 96.1
ERV 192131 1255 95.5 90.4
ERV1 83536316 857956 62.8 55.7
ERVK 8845044 118035 35.6 31.6
ERVL 56261410 376293 90 87.2
ERVL? 418361 2550 96.2 95.1
ERVL-MaLR 111131119 741120 85.4 79.8
Gypsy 2312231 13904 96.7 93.9
Gypsy? 1467092 8972 98.3 95.4
hAT 1686883 10028 95.8 88.2
hAT? 505238 3093 98 93.6
hAT-Blackjack 3436024 21096 97.1 91.9
hAT-Charlie 45149528 314072 93.9 87.5
hAT-Tip100 6635588 44491 96.6 91.9
Helitron 388235 2219 97.3 92.6
Helitron? 66137 326 994 92.9
L1 512818213 2714809 64 56.5
L1? 6868 39 100 100
L2 104388187 689060 96.9 94.2
Low_complexity 17235743 202393 92.5 63.4
LTR 476961 2548 94.5 92.6
LTR? 21980 141 100 97.9




Merlin 17762 130 91.5 88.5
MIR 84839808 572596 97 95.1
MuDR 692052 4514 94 1 88.6
Other 4015047 205878 6.9 2.3
Penelope? 10499 58 100 94.8
| PiggyBac 500519 4325 84 70.9
| PiggyBac? 44319 305 99 95.1
RNA 119461 1653 81.1 74.5
rRNA 176927 4124 81.5 77.6
RTE 3661238 18331 96.9 92.6
RTE-BovB 75161 445 98.2 97.3
Satellite 4014235 60731 48.9 55.3
scRNA 123332 989 89.4 73.8
Simple_repeat 26384021 225215 85.6 54.3
SINE 162234 1209 99.5 97.7
SINE? 45384 339 97.1 94.7
snRNA 341832 5166 87.9 74.7
srpRNA 264574 3318 82.8 73.2
TcMar 320139 1539 96.7 89.3
TcMar? 628300 4179 96.8 92.8
TcMar-Mariner 2839480 21056 87.4 71.9
TcMar-Tc2 1676142 9019 95.8 88.8
TcMar-Tigger 34040312 215118 93.3 86.1
telo 254535 10983 31.8 22.8
tRNA 337404 5403 84.9 721
Unknown 1281847 7534 97.7 95.1
Unknown? 18418 172 98.8 97.7
All repeats 1450353676 14777741 56.2 43.8




Supplementary Table 4: Mappability of repeat families. For each repeat family in the UCSC repeatMasker track, we
computed the size of the repeat family (in bp and in number of CpGs), its mappability and its coverage in percent CpGs.
Note that the repeat family names ending in “?” designate repeats which the UCSC repeatMasker track defines as
questionable.



Genomic Size (in GB) Size (in millions | Overlap with Overlap with Odds
domain of CpGs) blocks (in blocks (in Ratio
GB) millions of
CpGs)

Repeats 1.45 14.8 1.04GB 9.33 1.4
PMDs 1.23 10.0 1.14GB 8.45 6.5
LOCKs 0.77 5.8 697MB 5.06 6.8
LADs 1.14 8.6 989MB 7.10 4.9

Supplementary Table 5: The overlap of various genomic domains with differentially methylated regions in colon
cancer. The size of genomic domains are shown in column 1 in gigabases and column 2 in number of CpGs. Column 3
shows the overlap in gigabases and Column 4 in number of CpGs. Column 5 shows the observed to expected by chance
odds ratio. All the overlaps were statistically significant (p < 2.2 x 10™'°).



Hypervariable CpGs in all tissue
types (custom array)

Non-variably methylated
CpGs in colon cancer

(IMlumina 27k)
Hypomethylated | Hypermethylated

Number of CpGs 81 52 16,049
Inside

Hypomethylated 63% 4% 13%
Blocks
Inside

Hypermethylated 5% 37% 2%
Blocks

Supplementary Table 6. Enrichment of hypervariable methylated loci identified by the custom lllumina array in
blocks identified by bisulfite sequencing. We divided the 157 CpGs that showed a statistically significant variation
increase in all five tissues assayed with our custom array into hypermethylated in cancer and hypomethylated in cancer.
The first two columns show that a high percentage of these hypervariable methylated CpGs are in blocks identified by
colon cancer/normal bisulfite sequencing. The hypervariable methylated loci show a consistent direction of methylation
change with the bisulfite sequencing result. To perform an enrichment analysis, we combined the loci in colon cancer
identified with our custom array with those identified in the lllumina HumanMethylation27 array. There is a significant
enrichment of hypomethylated hypervariable loci in hypomethylated blocks identified by sequencing (P-value < 1x107°,

Fisher test).




Methylation status in normals Total | Hypo | No change | Hyper
All islands | Unmethylated (<= 0.2) 16184 | 0.1% 83.2% 16.7%
Partial methylated (>= 0.2, <=0.8) | 4796 | 17.0% 46.7% 36.3%
Methylated (>= 0.8) 5527 | 24.0% 75.9% 0.1%
Promoters | Unmethylated (<= 0.2) 11050 | 0.0% 88.5% 11.5%
Partial methylated (>= 0.2, <=0.8) | 1007 | 6.6% 50.1% 43.3%
Methylated (>= 0.8) 231 | 22.1% 77.9% 0.0%
Genic Unmethylated (<= 0.2) 13030 | 0.1% 85.6% 14.4%
Partial methylated (>= 0.2, <=0.8) | 2950 | 15.8% 46.6% 37.6%
Methylated (>= 0.8) 4295 | 18.4% 81.6% 0.1%
Intergenic | Unmethylated (<= 0.2) 1633 | 0.2% 70.1% 29.7%
Partial methylated (>= 0.2, <=0.8) | 1463 | 21.5% 47.4% 31.0%
Methylated (>= 0.8) 1137 | 45.5% 54.4% 0.2%
Repeats Unmethylated (<= 0.2) 7386 | 0.0% 83.0% 17.0%
Partial methylated (>= 0.2, <=0.8) | 928 | 5.3% 47.1% 47.6%
Methylated (>= 0.8) 316 | 12.7% 87.3% 0.0%

Supplementary Table 8: Methylation values observed in CpG islands in cancer compared to normal samples,
stratified using location relative to known genes. This is a subdivision of Table 2. For this table, a CpG island may
belong to more than one category (overlaps promoter region, overlaps genic including introns region, overlaps intergenic
region, and overlaps repeat region). Average methylation values in each island were averaged across subject for cancer
and normal samples separately. Note that in normal samples promoter CpG Islands are largely unmethylated, and of
these ~12% become methylated in cancer. In contrast intergenic islands show a more balanced proportion of methylated

and unmethylated state in normal tissue (35% versus 26%) with 45% hypomethylated in cancer.




Associated | Inversely correlated Percent Inverse
Genes genes correlated
Shift of boundary (hypomethylated) 2,273 -1,192 52%
Novel hypomethylation 38 17 45%
Other hypomethylated 442 192 43%
Shift of boundary (hypermethylation) 1,893 532 30%
Loss of boundary (hypermethylation) 1,119 346 31%
Other hypermethylated 1,204 335 28%

Supplementary Table 9: Gene expression negatively correlates with methylation in small DMRs. We mapped each
gene represented in a microarray experiment to the closest small DMR, with a gene and a DMR considered associated if
the DMR was within 2kbp from the transcription start site of the gene; 6,869 genes were mapped and are represented in
the table. For each of the small DMR classes, as defined in main text, we computed the number of associated genes that
were differentially expressed (FDR<0.05) and had an inverse relationship.



Gene ontology term Expected Count Size Od(.js P-value Q-value
count ratio

Mitotic cell cycle 11.6 31 185 3.1 3.8x10” 0.00036
Cell cycle process 18.7 42 297 2.6 5.4x10” 0.00036

Mitosis 9.9 25 157 2.9 1.5x10 0.006

Positive regulation of ubiquitin-protein 3.9 14 61 45 | 2.0x10° 0.0071

ligase activity during mitotic cell cycle

Organelle fission 13.7 30 216 2.5 3.6x10” 0.0097

Supplementary Table 10: Gene ontology enrichment analysis of differentially expressed genes associated with
hypomethylated boundary shifts. The differentially expressed genes comparing colon cancer samples to normal
samples were divided into two groups: those associated hypomethylated boundary shifts and the rest. The table shows
the five categories that with statistically significant enrichment (FDR<0.01).



Term ciﬁ‘:‘t Count | Size Gene IDs ggﬂ: P-value Q-value
collagen catabolic MMP10; MMP7; MMP3; KLK®6;
Drocess 0.160 6 20 MMP19: MMP1 56.3 8.1e-09| 0.0000021
multicellular
organismal MMP10; MMP7; MMP3; KLK®6; IL6;
macromolecule 0.288 7 36 MMP19: MMP1 32.0 1.2e-08 | 0.0000021
metabolic process
MMP10; MMP7; MMP3; TMPRSS3;
biopolymer FAP; KLK6; ADAMDEC1; KLK12;
catabolic process 3.486 151 425] TMPRSS3; MMP19; KLK8; REN; 5.0 1.8e-06 | 0.0001989
HGF; MEP1A; KLK12; PCSK1;
MMP1
MMP10; MMP7; MMP3; TMPRSS3;
FAP; KLK6; ADAMDEC1; KLK12;
catabolic process 3.565 15| 438] TMPRSSS3; MMP19; KLKS8; REN; 4.9 2.3e-06| 0.0001989
HGF; MEP1A; KLK12; PCSK1;
MMP1
inflammatory CXCL11; CCL26; IL1A; S100A12;
response 1.999 11 251 ] IL8RB; SERPINA3; CHST4; IL17A; 6.3 4.8e-06 | 0.0003384
REG3A; IL22; C4BPA
MMP10; MMP7; MMP3; TMPRSS3;
protein metabolic FAP; ADAMDEC1; KLK12;
process 2.697 12| 342 TMPRSS3: MMP19: KLKS: MEP1A: 5.2 1.4e-05| 0.0007995
INHBA; KLK12; MMP1
STC1; CXCL11; STC1; CCL26;
cell-cell signaling 2.294 11 286 | WISP3; CHST4; IL6; IL17A; STC1; 54 1.8e-05| 0.0008855
HGF; IL22; INHBA; PCSK1
acute-phase 0.206 4| 26| SERPINA3;IL6; REG3A; IL22 236| 4.9e-05| 0.0021309
response
ectoderm 0.117 3| 15 KRT6A; KRT6B; ELF5 32.8| 1.9¢-04| 0.0075583

development




Supplementary Table 13: Gene ontology enrichment analysis of hypervariable genes associated with blocks.
Genes represented in the microarray were divided into two groups: genes contained in hypomethylated blocks showing

hypervariability in cancer and the rest. The table shows the nine categories with statistically significant enrichment
(FDR<0.01).



Uniquely

Conversion

Reads Unique Unaligned Non-unique aligned to A percent (A
phage estimate)
Normal 1 Flowcell 1 485,990,920 183,844,653 226,160,599 75,985,667 6,762,031 99.7789
Normal 1 Flowcell 2 491,108,959 180,074,869 235,598,979 75,435,110 6,974,109 99.7807
Cancer 1 Flowcell 1 495,809,693 185,828,257 233,836,993 76,144,442 8,526,067 99.7456
Cancer 1 Flowcell 2 482,952,465 178,456,624 230,494,869 74,000,971 8,122,750 99.7472
Normal 2 Flowcell 1 496,397,317 180,791,619 237,818,636 77,787,061 7,270,350 99.7646
Normal 2 Flowcell 2 503,561,286 182,437,294 242,263,685 78,860,306 7,538,526 99.7657
Cancer 2 Flowcell 1 497,625,604 187,406,059 232,909,571 77,309,973 8,251,881 99.7804
Cancer 2 Flowcell 2 494,805,108 184,876,404 233,935,851 75,992,852 8,261,281 99.7860
Normal 3 Flowcell 1 489,558,995 168,584,119 251,409,912 69,564,963 8,817,079 99.7953
Normal 3 Flowcell 2 495,129,950 185,140,655 234,292,582 75,696,712 9,550,241 99.7937
Cancer 3 Flowcell 1 491,209,978 170,520,921 249,977,651 70,711,405 7,104,618 99.7919
Cancer 3 Flowcell 2 475,735,953 179,289,913 222,767,391 73,678,648 7,295,636 99.7930
Adenoma 1 Flowcell 1 | 477,819,340 153,546,992 259,594,989 64,677,358 3,457,741 99.7684
Adenoma 1 Flowcell 2 | 474,211,342 149,570,667 260,639,196 64,001,478 3,337,933 99.7678
Adenoma 2 Flowcell 1 | 479,069,565 165,738,601 242,575,131 70,755,832 12,991,935 99.7021
Adenoma 2 Flowcell 2 | 458,864,972 150,866,083 244,060,513 63,938,375 10,969,639 99.7055
Total 7,789,851,447 | 2,786,973,730 | 3,838,336,548 | 1,164,541,153 | 125,231,817 N/A

Average 486,865,715 174,185,858 239,896,034 72,783,822 7,826,989 99.7667

Supplementary Table 14: Sequencing and alignment results for the 7.79 billion bisulfite reads obtained from 8
runs (16 flowcells) of a SOLiD 3+ instrument. Alignment was performed against a collection of reference sequences
consisting of the GRCh37 human genome assembly, including mitochondrial DNA and “unplaced” contigs, plus the
sequence of the spiked-in A DNA. A read is said to align “uniquely” if it has exactly one valid alignment to the reference
according to the alignment policy. A read is said to align “non-uniquely” if it has more than one valid alignment according
to the alignment policy. A read “fails” to align if it has zero valid alignments. Cytosine conversion percentage is estimated
as the fraction of high-quality evidence from unique A phage alignments indicating lack of methylation.




Reads Unique Failed to align Non-unique

Normal 1 3,471,782 2,548,012 405,480 518,262
Cancer 1 18,054,443 14,048,143 1,539,281 2,466,307
Normal 2 9,927,197 7,826,766 964,752 1,135,416
Cancer 2 18,132,540 14,444,610 1,595,357 2,091,814
Normal 3 12,939,010 10,599,360 933,981 1,405,235
Cancer 3 16,821,937 13,736,162 1,238,826 1,846,244

Total 79,346,909 63,203,053 6,677,677 9,463,278
Average 13,224,002 10,533,842 1,112,946 1,577,213

Supplementary Table 15: Sequencing and alignment results for 79.3 million capture bisulfite reads obtained from
lllumina GA Il instrument. Alignment was performed against a collection of reference sequences consisting of the
GRCh37 human genome assembly, including mitochondrial DNA and “unplaced” contigs. A read is said to align “uniquely”
if it has exactly one valid alignment to the reference according to the alignment policy. A read is said to align “non-
uniquely” if it has more than one valid alignment according to the alignment policy. A read “fails” to align if it has zero

valid alignments.



Filtered

Reads Raw pieces Filtered . Filtered % CpGs
providing of human pieces of i(;;‘\éliden.ce evidence covered by 21
human CpG CpG human CpG cating indicating lack |piece of filtered
evidence evidence evidence presence of of methylation evidence
methylation
Normal 1 Flowcell 1 | 54,178,356 | 74,924,756 | 68,839,724 48,253,347 20,586,377 65.158%
Normal 1 Flowcell 2 | 53,689,203 | 74,623,785 | 68,199,772 47,773,815 20,425,957 65.045%
Cancer 1 Flowcell 1 | 55,834,653 | 77,831,608 | 71,498,083 45,243,596 26,254,487 65.103%
Cancer 1 Flowcell 2 | 53,902,278 | 75,253,470 | 68,697,400 43,321,299 25,376,101 64.479%
Normal 2 Flowcell 1 | 54,492,135 | 76,436,939 | 70,022,135 49,881,756 20,140,379 65.797%
Normal 2 Flowcell 2 | 55,012,691 | 77,239,693 | 70,641,796 50,296,004 20,345,792 65.978%
Cancer 2 Flowcell 1 | 55,815,773 | 77,542,380 | 71,153,086 42,104,541 29,048,545 65.526%
Cancer 2 Flowcell 2 | 54,867,691 | 76,121,856 | 69,486,614 40,787,828 28,698,786 65.271%
Normal 3 Flowcell 1 | 50,056,580 | 70,114,583 | 63,620,050 43,447,381 20,172,669 64.004%
Normal 3 Flowcell 2 | 54,385,230 | 75,777,367 | 69,162,172 47,580,371 21,581,801 65.333%
Cancer 3 Flowcell 1 | 51,426,265 | 71,942,006 | 65,509,795 35,741,629 29,768,166 63.954%
Cancer 3 Flowcell 2 | 53,527,518 | 74,427,549 | 68,200,974 37,298,457 30,902,517 64.356%
Adenoma 1 Flowcell 1| 47,841,436 | 67,596,302 | 61,069,078 40,572,495 20,496,583 63.580%
Adenoma 1 Flowcell 2| 46,522,581 | 65,753,563 | 59,413,620 39,519,156 19,894,464 63.125%
Adenoma 2 Flowcell 1| 46,102,652 | 63,325,754 | 58,045,004 33,949,586 24,095,418 61.767%
Adenoma 2 Flowcell 2| 43,224,022 | 59,918,936 | 54,862,907 32,006,566 22,856,341 60.444%
Total 830,879,064 |1,158,830,547|1,058,422,210] 677,777,827 380,644,383 N/A
Average 51,929,942 | 72,426,909 | 66,151,388 42,361,114 23,790,274 64.308%

Supplementary Table 16: Methylation evidence results for the 831 million bisulfite reads that aligned uniquely to
the GRCh37 human genome assembly and overlapped at least one CpG cytosine. A piece of CpG evidence occurs
when an alignment overlaps the cytosine position of a CpG in the reference sequence and the overlapping alignment
nucleotide is either a T (indicating a lack of methylation) or a C (indicating presence of methylation). A filter is applied to
remove nucleotide evidence that (a) is refuted by one or both of the overlapping colors from the original read, or (b) is
within 4 positions of either end of the nucleotide alignment.




Reads Raw pieces Filtered F|_Itered Filtered
- . evidence -
providing of human pieces of indicatin evidence
human CpG CpG human CpG g indicating lack
. ) . presence of .
evidence evidence evidence - of methylation
methylation
Normal 1 2,187,604 6,759,584 6,759,584 2,922,481 3,837,103
Cancer 1 12,101,267] 37,662,368] 37,662,368 18,012,291 19,650,077,
Normal 2 6,486,766] 17,935,202 17,935,202 7,858,465| 10,076,737,
Cancer 2 12,139,505]  35,156,131] 35,156,131 15,644,426| 19,511,705
Normal 3 8,607,882 22,477,332} 22,477,332 9,783,575 12,693,757,
Cancer 3 11,236,160] 29,853,287] 29,853,287 12,443,798 17,409,489
Total 52,759,184] 149,843,904 149,843,904 66,665,036] 83,178,868
Average 8,793,197 24,973,984 24,973,984 11,11 0,839| 13,863,145]

Supplementary Table 17: Methylation evidence results for the 63.2 million lllumina GAIl capture bisulfite reads
that aligned uniquely to the GRCh37 human genome assembly and overlapped at least one CpG cytosine. A
piece of CpG evidence occurs when an alignment overlaps the cytosine position of a CpG in the reference sequence and

the overlapping alignment nucleotide is either a T (indicating a lack of methylation) or a C (indicating presence of

methylation). A filter is applied to remove nucleotide evidence that (a) is refuted by one or both of the overlapping colors

from the original read, or (b) is within 4 positions of either end of the nucleotide alignment.



Percent of CpGs in human genome covered with filtered evidence at depth 2 threshold
Threshold | Normal 1 Cancer 1 Normal 2 | Cancer2 | Normal3 | Cancer3 |Adenoma 1|Adenoma 2
1 73.395% 73.279% 73.934% 73.636% 73.555% 72.994% 73.062% 71.459%
2 64.399% 63.918% 65.169% 64.567% 63.869% 63.247% 62.381% 60.906%
3 56.813% 56.119% 57.880% 57.091% 55.734% 55.099% 53.244% 51.613%
4 49.137% 48.461% 50.469% 49.640% 47.684% 47.116% 44.372% 42.406%
5 41.348% 40.917% 42.832% 42.148% 39.706% 39.335% 35.876% 33.569%
6 33.796% 33.753% 35.286% 34.872% 32.115% 32.000% 28.103% 25.573%
7 26.804% 27.219% 28.188% 28.088% 25.232% 25.391% 21.338% 18.770%
8 20.635% 21.496% 21.847% 22.042% 19.270% 19.674% 15.731% 13.296%
9 15.442% 16.658% 16.446% 16.862% 14.321% 14.917% 11.282% 9.114%
10 11.254% 12.693% 12.040% 12.596% 10.369% 11.087% 7.892% 6.061%

Supplementary Table 18: Fraction of CpGs in the GRCh37 human genome assembly covered by at least one
through ten pieces of filtered evidence from whole-genome bisulfite SOLiID data. Each sample is sequenced on two
flowcells of a SOLID 3+ instrument; here, results are calculated after pooling evidence from the two flowcells.



CpG CpG Non-CpG C Non-CpG C Estimated %
Sample positions: positions: positions: positions: cytosines

Percent T Percent C Percent T Percent C unconverted
Normal 1 30.03% 69.84% 99.76% 0.20% 0.22%
Cancer 1 36.95% 62.92% 99.73% 0.23% 0.25%
Normal 2 28.87% 70.99% 99.74% 0.22% 0.24%
Cancer 2 41.16% 58.71% 99.77% 0.20% 0.22%
Normal 3 31.48% 68.39% 99.77% 0.20% 0.21%
Cancer 3 45.39% 54.48% 99.77% 0.19% 0.21%
Adenoma 1 33.57% 66.32% 99.73% 0.24% 0.23%
Adenoma 2 41.68% 58.17% 99.70% 0.25% 0.30%

Supplementary Table 19: Fraction of filtered nucleotide evidence from whole-genome bisulfite SOLiID data where
evidence indicates presence of a T or C. Filtered nucleotide evidence consists of evidence (a) from reads that aligned
uniquely, (b) where both overlapping colors from the original read agree with the decoded nucleotide and, (c) where
nucleotides within 4 positions of either end of the alignment are excluded. The first two columns show the global fractions
of Ts and Cs covering CpG cytosines. The third and fourth columns show the global fractions of Ts and Cs covering non-
CpG cytosines. For comparison, the final column shows the unconverted cytosine rate (one minus the conversion rate)
estimated from the A phage alignments.
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Supplementary Figure 1: Methylation levels of differentially methylated CpGs in colon cancer largely
differentiate cancer from normal in colon(a), lung(b), breast(c), thyroid(d) and kidney(e)(Wilms) tissues.
Columns and rows in each panel are ordered by a hierearchical clustering of methylation profiles using Euclid-
ean distance. The heights of dendrogram branches, larger between tumor samples than between normal
samples, illustrate the increased across-sample variability in cancer seen in a majority of CpGs in all tissues.
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Supplementary Figure 2: Increased variability is not due to changes in mean methylation levels. Each column plots mean versus
standard deviation of methylation values for normal and cancer in colon, lung, breast, thyroid and kidney (Wilms’ tumor). The dotted line
indicates the expected variance from the binomial model at each mean methylation level. Increased variability is clearly observed in

cancer along the range of methylation values. CpGs are coded to indicate significant differences in mean only (orange), variance only
(purple), both (green), or neither(grey).
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Supplementary Figure 3: Histological analysis of colon samples shows increased methylation variation is not due to
cellular heterogeneity of samples. (a) and (b) Summary of the histological analysis. Each bar corresponds to a sample ((a) colon
or (b) kidney) with normal samples denoted N and tumors as T. The tumor samples are actually more homogenous since they are
primarily composed of neoplastic epithelial cells. (¢) and (d) Quantification of sample heterogeneity using the entropy of the cellular
composition of each sample. On average normal samples are more heterogeneous than tumor samples in cellular composition.
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Supplementary Figure 4: Validation that increased variation in
cancer is not caused by differences in age. Because 111 out of 122
samples were matched normal/tumor pairs, age was nearly balanced.
However, because for lung, breast, and thyroid we included some
samples that were not matched, we re-ran the analysis used for Figure 1
in the main manuscript after applying a regression model that corrected
for age. (a) Lung (b) Breast (c) Thyroid - The conclusions are the same
as described in the legend to Figure 1 in the main manuscript. (d) We
also see the same results with this new analysis as in Figure 1f.
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Supplementary Figure 5: Copy number variation versus methylation variance. Copy number variation of 5 colon
tumor samples a) and 5 Wilms tumor samples b). Chromosomes are colored in alternating green and black for clarity.
Note that the Wilms samples generally show normal copy number, while the colon cancer samples demonstrate aneu-
ploidy. Methylation levels measured at 384 CpG sites using the custom Illlumina array exhibit an increase in across-
sample variability in ¢) 5 colon normal/tumor matched samples and d) 5 kidney/Wilms tumor samples. Each panel
shows the across-sample standard deviation of methylation level for each CpG in normal and matched cancer samples.
The solid line is the identity line; CpGs above this line have greater variability in cancer. In both p53 postive and nega-
tive cancers, the vast majority of CpGs are above the solid line, indicating that the trend is independent of aneuploidy .
Colors indicate the location of each CpG with respect to canonical annotated CpG islands.
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Supplementary Figure 6: Aberrant p53 expression versus methylation variance. H&E stains of a) Colon and b)
Wilms tumor samples, all images taken at 4X magnification. p53 IHC stains for ¢) Colon and d) Wilms tumor samples;
colon samples show a positive p53 stain, whereas Wilms samples do not. Methylation levels measured at 384 CpG
sites using the custom lllumina array exhibit an increase in across-sample variability in €) 7 colon normal/tumor matched
samples, all positive for p53 and f) 7 kidney/Wilms tumor samples, all negative for p53. Each panel shows the across-
sample standard deviation of methylation level for each CpG in normal and matched cancer samples. The solid line is
the identity line; CpGs above this line have greater variability in cancer. In both p53 postive and negative cancers, the
vast majority of CpGs are above the solid line, indicating that the trend is independent of p53 status. Colors indicate the
location of each CpG with respect to canonical annotated CpG islands.



Colon
Lung
Breast
Thyroid
Wilms

Measured Methylation

00 02 04 06

Supplementary Figure 7: Hierarchical cluster analysis of the normal samples using all probes. The
heatmap of the methylation values for these clearly distinguishes the tissue types.
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(c) chr6: 108,432,378-108,441,436
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Supplementary Figure 8: Three examples illustrating the concordance between smoothed whole
genome bisulfite sequencing and high-coverage (>30x) capture bisulfite sequencing. These three
are representative of the genomic regions we used to corroborate our findings. (a) chr13: 50,699,282-
50,710,513. The top panel shows the average methylation difference between the 3 cancer samples and
the 3 normal samples. The black curve is the smoothed whole genome bisulfite data and the points are the
single base resolution capture bisulfite data. The second panel shows the average of the methylation esti-
mates for the 3 normal samples. The blue curve is the smoothed whole genome bisulfte data and the points
are the single base resolution capture bisulfite data. The third panel shows the average of the methylation
estimates for the 3 cancer samples. The red curve is the smoothed whole genome bisulfte data and the
points are the single base resolution capture bisulfite data. The grey bars at the bottom show the locations
of small DMRs and capture regions. (b) as (a) but for region chr2: 19,550,164-19,562,986. (c) as (a) but
for region chr6: 108,432,378-108,441,436. Note that the curves go through the points, demonstrating the
remarkable agreement between the smoothed whole-genome bisulfite data and the high-coverage capture
bisulfite data. Additional regions are available at http://rafalab.jhsph.edu/cancer_seq/capture.pdf.
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Supplementary Figure 9a: Bisulfite pyrosequencing of small DMRs. At top is pictured the same plot from Fig. 3a, showing the
smoothed methylation values plotted against genomic location for the region. Cancer samples are plotted as red lines, and normal
samples as blue lines with the DMR highlighted in pink. Regions which were bisulfite pyrosequenced are highlighted in green.

Below, the methylation values from the three bisulfite pyrosequenced regions are plotted versus genomic position. Red circles are

cancer samples, and blue circles are normal.
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Supplementary Figure 9b: Bisulfite pyrosequencing of small DMRs. At top is pictured the same plot from Fig. 3b, showing the
smoothed methylation values plotted against genomic location for the region. Cancer samples are plotted as red lines, and normal
samples as blue lines with the DMR highlighted in pink. Regions which were bisulfite pyrosequenced are highlighted in green.

Below, the methylation values from the three bisulfite pyrosequenced regions are plotted versus genomic position. Red circles are

cancer samples, and blue circles are normal.
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Supplementary Figure 9c: Bisulfite pyrosequencing of small DMRs. At top is pictured the same plot from Fig. 3c, showing the
smoothed methylation values plotted against genomic location for the region. Cancer samples are plotted as red lines, and normal
samples as blue lines with the DMR highlighted in pink. Regions which were bisulfite pyrosequenced are highlighted in green.

Below, the methylation values from the three bisulfite pyrosequenced regions are plotted versus genomic position. Red circles are

cancer samples, and blue circles are normal.
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Supplementary Figure 9d: Bisulfite pyrosequencing of small DMRs. At top is pictured the same plot from Fig. 3d, showing the
smoothed methylation values plotted against genomic location for the region. Cancer samples are plotted as red lines, and normal
samples as blue lines with the DMR highlighted in pink. Regions which were bisulfite pyrosequenced are highlighted in green.

Below, the methylation values from the three bisulfite pyrosequenced regions are plotted versus genomic position. Red circles are

cancer samples, and blue circles are normal.
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Supplementary Figure 10: Simulations show that block locations co-occur. (a) Start loca-
tions of blocks for each of the 3 cancer-normal pairs are shown for a 2MB region on chromo-
some 1. Also shown are 4 simulated sets of block start positions. Vertical lines represent the
start locations of blocks for cancer-normal pair 3. (b) For each of the 3 cancer-normal pairs we
computed the distance from the observed start position of each sample-specific block to the
closest start position in the other pairs. The boxplot on the left shows the distribution of these
distances, pooled across all possible comparisons. The boxplot on the right shows the expected
distribution of distances under the null hypothesis that the block start positions do not agree.
The smaller values seen in the left boxplot demonstrates that the start positions of the sample-
specific blocks co-occur much more frequently than expected by chance.
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Supplementary Figure 11: Block and small DMR
detection not affected by copy number variation.
(a) For a 25 megabase region of chromosome 20
(1-25MB), we show the methylation differences
between all three normal-cancer pairs plotted along
the chromosome, with red lines representing the
average values in blocks. Notice that the location of
blocks is consistent across all three normal-cancer
pairs. For illustrative purposed, we highlight (pink
shade) the seven largest blocks. (b) For each
normal-cancer pair, we show copy number altera-
tions, quantified by log ratios (base 2) of coverage in
cancer sample to coverage in normal sample, for
the same region as in (a). Log-ratios of 0 are associ-
ated with lack of copy number alternations in cancer,
while values larger or equal to log,(3/2) (dashed
line) are associated with gain of copy number in
cancer. The red lines represent segments obtained
with the CBS algorithm (described in the Supple-
mentary Note). Notice that each sample shows
different copy number alterations. (c) Differences in
methylation are plotted against differences in copy
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number (log-ratios) for the entire genome.
Specifically, for each of the segments detected
by CBS, we computed the average difference in
methylation and the average log-ratio associ-
ated with copy number alteration. We did this
for each sample and combined all the points in
one scatter-plot.
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Supplementary Figure 12: Methylation changes of selected repetitive DNA families.

Distribution of methylation differences between cancer and normal samples stratified by

repeat family and inclusion in blocks. CpGs outside all repetive elements were used as
controls. Above each graph is the percentage of covered CpGs in each repeat family.
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Supplementary Figure 13: The need for biological replication for detecting DMRs. (a) In
the left panel, we show methylation patterns for three normal samples (blue) and matched
cancers (red). The detected DMR is shaded in pink. In the right panel, we show the average
methylation values within the DMR for the three paired samples (normal in blue, cancer in red,
the matched sample pairs indicated by numbers). We performed a t-test for the difference
between normal and cancer and obtained a p value of 0.0056. (b) We show the same analysis
as (a) for a region in which if we had only analyzed normal-cancer pair 3 (thick lines), there
would appear to be a methylation difference between cancer and normal. However, the p
value when all three samples are compared is 0.52. Notice that our methylation estimates are
very precise (standard error for points in right panel are < 0.02). Therefore the differences we
see are biological not technical, and will be seen regardless of the measurement technology.
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Supplementary Figure 14: Comparison of CHARM microarray data and bisulfite sequencing for
measuring methylation. Average methylation level from previously published CHARM microarray
data (Irizarry et al., 2009) (y-axis) is plotted versus the average methylation obtained from high-
frequency smoothed bisulfite sequencing data. Each point represents one of the cDMR regions origi-
nally identified in (Irizarry et al., 2009). (a) Normal and (b) Cancer samples. Note the high degree of
correlation between CHARM and sequencing.
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Supplementary Figure 15: Inverse correlation of gene expression with methylation at
small DMRs. Average log gene expression values, obtained from GEO dataset GSE8671,
plotted versus the average difference in methylation of a nearby small DMR. We consid-
ered a gene and a small DMR associated if the DMR was within 2,000 bp of the transcrip-
tion start site of the gene; 6,869 genes mapped to a DMR in this way. Different types of
small DMRs are indicated by color, boundary shift (green), boundary loss (orange), novel
hypomethylation (purple) and other (pink). The dashed lines represent a fold change of 2

in the gene expression comparison.
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Supplemental Figure 16: Increased variation in methylation between normal and
cancer samples in blocks. Across-sample standard deviation of methylation level for
each block of normal versus cancer samples. Average methylation levels were computed
for each block using high frequency smoothed SOLID bisulfite sequencing data. The solid
line is the identity line; CpGs above this line have greater variability in cancer. As in Figure
1, the vast majority of blocks show an increased variation in cancer compared to normal
samples.
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Supplementary Figure 17: Proportion of hyper-variable genes inside blocks. Genes
represented in the Affymetrix HGU-133Aplus array were stratified by their across-sample
standard deviation in cancer into 10 bins. Expression from a colon cancer study was used.
(a) For each bin, the proportion of tissue-specific genes was computed for genes with their
transcription start site (TSS) outside of blocks. Here we plot these proportions against the
average standard deviation of the respective bin. The horizontal line represents the propor-
tion of TSS represented in the microarray that are outside hypomethylated blocks and are
tissue-specific genes. (b) For each bin, the proportion of genes with their transcription start
site (TSS) in a hypomethylated blocks was calculated. Here we plot these proportions
against the average standard deviation of the respective bin. The horizontal line represents
the proportion of TSS represented in the microarray that are inside hypomethylated blocks.
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Supplementary Figure 18: Hypervariable gene expression in cancer in hypomethyl-
ated blocks. Standardized (using gene expression barcode) expression values for the 26
of the 50 most hypervariable genes in cancer which are within hypomethylated block
regions. Genes with standardized expression values below 2.54 (dotted horizontal line)
are determined to be silenced by the barcode method (Zilliox and Irizarry, 2007). Expres-
sion values for each gene, separated by vertical dotted lines, from dataset GSE4183 are
plotted for normal (blue) and cancer (red) samples. Note there is consistent expression
silencing in normal samples compared to variable expression in cancer samples. This
plot is similar to Figure 5b, but for a different expression dataset.
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Supplementary Figure 19: Number of reads and alignments obtained from SOLiD 3+ bisulfite sequencing. The
stacked bar chart illustrates the number of reads sequenced per flowcell, with the colors indicating uniquely reads (red),
unaligned reads (green) and non-uniquely aligned reads (purple). A total of 7.79 billion reads were obtained from 8 runs
(16 flowcells) of a SOLID 3+ instrument.
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Supplementary Figure 20: Estimated unmethylated cytosine conversion rate per sample. Bisulfite conversion
efficiency is plotted per SOLID 3+ flowcell. Conversion efficiency is estimated as the fraction of high-quality evidence
aligning to CpG cytosines in the unmethylated A phage genome that indicates lack of methylation.
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Supplementary Figure 21: Number of reads and alignments obtained from lllumina GA
Il bisulfite capture sequencing. The stacked bar chart illustrates the number of reads
sequenced per sample, with the colors indicating uniquely reads (red), unaligned reads
(green) and non-uniquely aligned reads (purple). A total of 79.3 million reads were obtained.
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Supplementary Figure 22: SOLID 3+ Read position bias in evidence for methylation. The horizontal axis represents
an offset into the nucleotide alignment from the 5’ end. The vertical axis represents the fraction of filtered CpG
methylation evidence from that offset that indicates that methylation is present. Only reads aligning uniquely to the
GRCh37 human genome assembly are considered. In a perfect assay, the fraction should be independent of alignment
offset and each line should be flat and horizontal. In practice, the lines are not flat due to sequencing error and other
noise arising from sample preparation and alignment.
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Supplementary Figure 23: Read position bias in evidence for methylation in capture
bisulfite data sequenced on the lllumina GA Il instrument. The horizontal axis represents
an offset into the nucleotide alignment from the 5’ end. The vertical axis represents the frac-
tion of filtered CpG methylation evidence from that offset that indicates that methylation is
present. Only reads aligning uniquely to the GRCh37 human genome assembly are consid-
ered. In a perfect assay, the fraction should be independent of alignment offset and each line
should be flat and horizontal. In practice, the lines are not flat due to sequencing error and
other noise arising from sample preparation and alignment. Based on this plot the first 15
bases of the reads were trimmed before further analysis.
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Supplementary Figure 24: Precise methylation estimates obtained by high-frequency
smoothing. The circles represent the single CpG estimates of methylation, which are plotted
against the CpG location. The areas of the circles are proportional to the coverage. The high-
frequency smoothed values (described in detail in the Supplementary Methods) are plotted as
solid lines. Dashed lines represent 95% pointwise confidence intervals. We used the region
shown in Figure 3(c) to illustrate our statistical approach.



